Exciton Dynamics in InSb Colloidal Quantum Dots.
نویسندگان
چکیده
Extraordinarily fast biexciton decay times and unexpectedly large optical gaps are two striking features observed in InSb colloidal quantum dots that have remained so far unexplained. The former, should its origin be identified as an Auger recombination process, would have important implications regarding carrier multiplication efficiency, suggesting these nanostructures as potentially ideal active materials in photovoltaic devices. The latter could offer new insights into the factors that influence the electronic structure and consequently the optical properties of systems with reduced dimensionality and provide additional means to fine-tune them. Using the state-of-the-art atomistic semiempirical pseudopotential method we unveil the surprising origins of these features and show that a comprehensive explanation for these properties requires delving deep into the atomistic detail of these nanostructures and is, therefore, outside the reach of less sophisticated, albeit more popular, theoretical approaches.
منابع مشابه
Engineering the Spin–Flip Limited Exciton Dephasing in Colloidal CdSe/CdS Quantum Dots
We have measured the intrinsic exciton dephasing in high-quality zinc blende CdSe/CdS colloidal quantum dots in the temperature range from 5 to 170 K using a sensitive three-beam photon echo technique in heterodyne detection, which is not affected by spectral diffusion. Pure dephasing via acoustic phonons dominates the initial dynamics, followed by an exponential zero-phonon line dephasing. Fro...
متن کاملOptimization schemes for efficient multiple exciton generation and extraction in colloidal quantum dots
متن کامل
Large blue shift of the biexciton state in tellurium doped CdSe colloidal quantum dots.
The exciton-exciton interaction energy of tellurium doped CdSe colloidal quantum dots is experimentally investigated. The dots exhibit a strong Coulomb repulsion between the two excitons, which results in a huge measured biexciton blue shift of up to 300 meV. Such a strong Coulomb repulsion implies a very narrow hole wave function localized around the defect, which is manifested by a large Stok...
متن کاملSpin-flip limited exciton dephasing in CdSe/ZnS colloidal quantum dots.
The dephasing time of the lowest bright exciton in CdSe/ZnS wurtzite quantum dots is measured from 5 to 170 K and compared with density dynamics within the exciton fine structure using a sensitive three-beam four-wave-mixing technique unaffected by spectral diffusion. Pure dephasing via acoustic phonons dominates the initial dynamics, followed by an exponential zero-phonon line dephasing of 109...
متن کاملPrediction of an excitonic ground state in InAs/InSb quantum dots.
Using atomistic pseudopotential and configuration-interaction many-body calculations, we predict an excitonic ground state in the InAs/InSb quantum-dot system. For large dots, the conduction band minimum of the InAs dot lies below the valence band maximum of the InSb matrix. Due to quantum confinement, at a critical size calculated here for various shapes, the gap E(g) between InAs conduction s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry letters
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2016